Estimating Semi-Parametric Missing Values with Iterative Imputation
نویسنده
چکیده
In this paper, the author designs an efficient method for imputing iteratively missing target values with semi-parametric kernel regression imputation, known as the semi-parametric iterative imputation algorithm (SIIA). While there is little prior knowledge on the datasets, the proposed iterative imputation method, which impute each missing value several times until the algorithms converges in each model, utilize a substantially useful amount of information. Additionally, this information includes occurrences involving missing values as well as capturing the real dataset distribution easier than the parametric or nonparametric imputation techniques. Experimental results show that the author’s imputation methods outperform the existing methods in terms of imputation accuracy, in particular in the situation with high missing ratio.
منابع مشابه
Missing Values with iterative imputation
In this paper, the author designs an efficient method for imputing iteratively missing target values with semiparametric kernel regression imputation, known as the semi-parametric iterative imputation algorithm (SIIA). While there is little prior knowledge on the datasets, the proposed iterative imputation method, which impute each missing value several times until the algorithms converges in e...
متن کاملMultiple Imputations Using Sequential Semi and Nonparametric Regressions
Multiple imputation is a general purpose method for analyzing data with missing values. Under this approach the missing set of values is replaced by several plausible sets of missing values to yield completed data sets. Each completed data set is then analyzed separately and the results (estimates, standard errors, test statistics etc) are combined to form a single inference. It is fairly well ...
متن کاملEstimating Sparse Precision Matrices from Data with Missing Values
We study a simple two step procedure for estimating sparse precision matrices from data with missing values, which is tractable in high-dimensions and does not require imputation of the missing values. We provide rates of convergence for this estimator in the spectral norm, Frobenius norm and element-wise `∞ norm. Simulation studies show that this estimator compares favorably with the EM algori...
متن کاملEstimating Missing Values Using Mixture Kernel Regression
One of the important problem in data quality is the presence of missing data. So missing data imputation is an important issue in learning from incomplete data. Imputation is a procedure that replaces the missing values in a data set by some plausible values. Various techniques have been developed to deal with missing values in data sets with homogenous attributes. But those approaches are inde...
متن کاملA non-parametric regression approach for missing value imputation in microarray
Microarray experiments often generate data sets with multiple missing expression values. Estimating these missing values is very important since they affect biological applications and many multivariate statistical analyses. A limitation of the existing estimating methods is that they assume the relations between genes to be linear. However, that is not always the case. In this paper, we propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJDWM
دوره 6 شماره
صفحات -
تاریخ انتشار 2010